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WEAK CONVERGENCE OF RANDOM SUMS OF INFIMA
OF INDEPENDENT RANDOM VARIABLES

BY
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Abstract. Let {Y,, n > 1} be a sequence of independent positi-
ve random variables, defined on a probability space (2, o¢, P), with
a common distribution function F. Put

Y =inf(Yy, Ys ..., V), m>1and S,= ¥ Y& n>1.

m=1
In this paper mixing limit theorem for the sums S,, n> 1, is
given and the random central limit theorem is proved.

1. Introduction and resuits. Let {Y,, n > 1} be a sequence of independent
positive random variables with a common distribution function F. Let us put

Yf=inf(Y;, Y,,...,Y,), m>1, and S,= ) Yixn>1.

The three convergences: in probability, almost sure and in law were
established in [4]-[7] for sums S, of infima of independent random variables
uniformly distributed -on [0, 1]. The almost sure invariance principle was
investigated in [8].

Now, let {Y,,n>1} be a sequence of independent positive random
variables with a common distribution function F such that

F(x)——;i x"%dx <o for 0 <b < 0.

1

4y |

0

T. Hoglund proved in [9] the following central limit theorem:
Tueorem 0. Under assumption (1)

lim P(Z, < x) = &(x),

n—an
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where
Z"=w’ n>1,
b./2logn
2 . : _
Sn= Z Yl-c*a Y;c =inf(Yle Yls AR ] Yk): k? 15 nz 1:

k=1

and @ is the standard normal distribution function.

In this paper we give a mixing limit theorem and a random central limit
theorem for {Zpyn>1}

TueoreM 1. (i) Under the assumptions of Theorem 0O the sequence
{Z,, n>1} is mixing, ie.

Jim P(Z, < x|B) = ®&(x)

for any event Be s/ such tﬁat P(B) > 0.

(ii) Let {N,,n>1} be a sequence of positive integer-valued random
variables such that ‘ '

3 NJa,~>2 as n— o,

where A is a positive random variable dependent only on finitely many Y,, n
=1, and {a,, n = 1} is a sequence of positive numbers tending to +co. Then

“) . lim P(Zy <x) = @(x).

n—*aoo

2. Proofs of results. In the proof of Theorem 1 we apply some lemmas
given by Dehetvels [5] and Hoglund [9]. For the sake of completeness we
present them in Section 3.

Proof of Theorem 1. (i) Let {Z,, n > 1} be defined by (2) and Ilet
Y*, =inf(Y,4q, ..., Y,) for n>m. Denote by A4, the event {Z, <x} for k
> n,y, where ng is such that P(4,) >0 for all k > n,. We prove that the
sequence {Z,, n >1} is mixing. '

By Theorem 1 ([10], p. 406) it is sufficient to show that

) . imP(4,4)=8(), k>n,

n—+w

as, by Theorem 0, lim P(4,|Q) = ®(x). Since

n—+ra

Y (F-Y% Y Yi-blogn

Sk I=k+1 I=k+1

Z,=
b./2logn b\/2logn *  b./2logn
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we have S,/b./2logn — 0 as. as n— oo, and, by Lemma 34,

> (B*—YH)/b./2logn —0 as. as n— .
I=k+1

The random variables ) Y% are independent of S, for every k = n,, so,'
by Theorem 0, we immediately obtain (5) and the proof of (i) is completed.

(i) To prove that P(Zy < x)— @(x) as n— oo for every {N,,n>1}
satisfying (3), it is sufficient to note that the sequence {Z,, n > 1’} satisfies
assumptions of Theorem 3 in [3].

By (i) and since the random variable A depends only on finitely many
Y,, n=1, we have
6) lim P(Z, <x|A) ®(x)
for all Ae #,, where %, is the o-field generated by the random variable 1.

Now we show that {Z,, n>1} satisfies the generalized Anscombe’s
condition with the norming sequence {k, = n, n > 1}, i.e. that for every ¢ >0
there exists a & > 0 such that

7N limsup P4 ( max |Z,—Z;| = &) < eP(4)

n—aw (1-8)n<i<(L+dn

holds for every Ae % ,, where P,(B) = P(4 n B). :
If we write D,(6) = {i: (1—-0)n <i <(1+0)n}, then by a simple estima-
tion we obtain

|S —blogn S;—blogi

8 maxl|Z,—Z]|=

iebyd xeD (&) lb \/2 logn b\/Zlogl
[ S, S; | logn logi
<m +
zeD,,(a) |b \/ 2logn b \/ 2logi zg,,(é) |\/ 2logn \/ 2logi
< max max ( Su Si 5 S )+
\ien,,(a) b\/210gn b\/210gt b\/2logi b\/210gn

+L max maxk/logn-—{/logi, \/logi —\/logn)

\/5 ieDy(d)

< max< Staqs - a1 S[n(l +3) Sn )
b 2logn b\/2logn(1+5) b./2logn(1-9) b /2logn

+—\}—§max(\/logn—\/log n(l—é), Jlogn(1+8)—./logn)




44 H. Hebda-Grabowska

n

1 1 K
< max | S, - ( S ) k=[n(i =91+ 1
(“‘ b /2logn b./2logn(1+8)) b 2logn
[n(liff?)]
Y
Sn( 1 - 1 )+ k=n+1 , )
b./2logn(1—8) b./2logn/ b./2logn(1-9)
+(/log n(1+6) — /log n(1 —8))//2
[n(1 +3)]
Y*
< k=i Z o1 ‘ + max ( Stn1 - a1 Sn b’)+c
b./2logn(1-96) blogn(1—3) ™ blogn
where 3
b, = log (1 5)[ ! ! J
" S2logn . /2logn(1+6)]

b, =lo, n[ ! _ ! ]
T o8 J2logn(1-8) ./2logn |
Cp = ——\]E(\/lbg n(1+6)—./logn(1-9)).

It is 'easy to see that b,—0, b,—0 and ¢,— 0 as n— co.

Now let {X,,, n>1} be a sequence of independent random variables
uniformly distributed on [0 I]

Put G(t)y =inf{x > > t}. Then, by [6], the sequences {G(X,),
nz=1} and {Y,,n> 1‘ are the same in law

Furthermore, the sequence S, = Z Y* may be represented as S,
k=1-

= Z G(X}), where X =inf(X,, X,, ..., X)), k> 1
k=1 '
On the other hand, Hoglund [9] proved that

Z G(X)—blogn Y X¥—logn
k=1

b./2logn B 2logn

holds in law, where r,,—-»O as n— oo. Therefore, by Lemma 3.1,

S St -
9 A0} _p o= T p oty b0, as. as n— a0

blogn(1-6) " logn(1—¢)
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and

o

S S
= =—"b,+r,b,—0 as. as n— o,
n

(19) blogn log

where §, = Y X¥, n> 1. So, by (8)«10) we get
k=1

[n(1+9)]
rF .
(11) [max |Z,—Z| >¢] = [ Lt wut S —]
ieD,(8) b./2logn(1-8) 2

for any ¢ > 0 and sufficiently large n.
Observe that

(1 + ) [n(1 + 3 [n(1 + )]
W= ) (G-t Y Yo
k=[n(1-8)]+1 k=[n(1-0)]+1 k=[n{1-4d)]+1

By Lemma 3.4 and the fact that the random variables A and

[n(1+0)]
Vi1 - ok
k=[n(1—-81+1
are independent for sufficiently large n, one can check that condition (7) is a
consequence of the following well-known Anscombe condition:

(12) limsupP(max |Z,—Z;} = ) <.

n-rw ieDy(d)

By (11), Lemma 3.3, the Markoff inequality and Lemma 3.2 we obtain
[n(1 +8)]
lfk*

P[max |Z,~Z| = ¢e] < P[ k=ln1 - O+ 1 > f}
ieD,(d) b./2logn(1-8) 2

[n(1+3)] in(1+3)] }
. €4 E( Z X¥)
: i & =l
<P[k—[n(l +1 >_]<3 ke==[n{1— 5]+ 1

,/210gn(1—5)/3 £./2logn(1-9)

=——9£)~———>0 as n— 0.

V2logn(1-4)

Hence, from Theorem 3 of [3], we immediately obtain (4) for every
{N,, n > 1} satisfying (3). This completes the proof of Theorem 1.

3. Lemmas. In this section we present some lemmas we needed in the
proofs of Theorem 1.
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LemmaA 3.1. Let {X,,n>1} be a sequence of independeni random variab-
les umformly distributed on [0, 1]. Then S,/logn— 1 as. as n — oo, where S,

Z Xk’ and Xk _1nf(X1, Xz,..., Xk)! k/ 3 2 1.
k=1

LEmMma 3.2 EX§ =(k+1)"! (k> 1), ES,—logn = 0(1).
LemMa 3.3. Under the assumptions of Theorem 0

Y G(X¥)—blogn ) X}—logn
k=1 =*=1 +r, in law,

b./2logn B J2logn

P
where r,— 0 as n— oo, and

2 nlGXE)—bX}
k=1
Jlogn

where, for 0 <d <1, y,=1 if XF<o
inf{x > 0: F(x) > t}.

LEmMma 3.4. Let {Y,, n> 1} be a sequence of positive independent random
variables with the common distribution function F such that F(x) = 0 for x <0,
F(x) >0 for x >0. Let us put ¥ =inf(Y;, ..., V), Y3, =inf(Y, 44, ..., 1)
n>m, n=1l.

V4 ‘@
- Then the sum % (Y

n=m+1

Proof. We observe that

P
-0 as n— o0,

and y, =0 if X >4, ande(t)z

- Y¥) converges almost surely.

3 * < *
¥ <{0 if V¥ <Y

0< Y, — .
Y, i Y, > Y

‘Then.

)

Z (Yn’,'fn-K.*}< Z YntnI[Y:'”‘n?Ym]'

n=m+1 a=m+1

Now, it is sufficient to show that

im P( Y YIy: >y, > K)=0.

Koo p=m+1

Indeed,

Iim P( 2 YntnI[Y;,,I)Y;i ; K)

K- p=m+1

= {lim P( } ol > 2 )PY dC) =

K—wo p=m+1
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by
lim P( Z Y¥ I[}m >a > >K)=0 for every C >0,

K-  p=m+1
and P(Y,,=C)=0 for C=0.
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